Формула сложных процентов
В финансовой практике значительная часть расчетов ведется с использованием схемы сложных процентов.
Применение схемы сложных процентов целесообразно в тех случаях, когда:
- проценты не выплачиваются по мере их начисления, а присоединяются к первоначальной сумме долга. Присоединение начисленных процентов к сумме долга, которая служит базой для их начисления, называется капитализацией процентов;
- срок ссуды более года.
Если процентные деньги не выплачиваются сразу по мере их начисления, а присоединяются к первоначальной сумме долга, то долг, таким образом, увеличивается на невыплаченную сумму процентов, и последующее начисление процентов происходит на увеличенную сумму долга:
FV = PV + I = PV + PV • i = PV • (1 + i)
– за один период начисления;
FV = (PV + I) • (1 + i) = PV • (1 + i) • (1 + i) = PV • (1 + i)2
– за два периода начисления;
отсюда, за n периодов начисления формула примет вид:
FV = PV • (1 + i)n = PV • kн ,
где FV – наращенная сумма долга;
PV – первоначальная сумма долга;
i – ставка процентов в периоде начисления;
n – количество периодов начисления;
kн – коэффициент (множитель) наращения сложных процентов.
Эта формула называется формулой сложных процентов.
Как было выше указано, различие начисления простых и сложных процентов в базе их начисления. Если простые проценты начисляются все время на одну и ту же первоначальную сумму долга, т.е. база начисления является постоянной величиной, то сложные проценты начисляются на увеличивающуюся с каждым периодом начисления базу. Таким образом, простые проценты по своей сути являются абсолютными приростами, а формула простых процентов аналогична формуле определения уровня развития изучаемого явления с постоянными абсолютными приростами. Сложные проценты характеризуют процесс роста первоначальной суммы со стабильными темпами роста, при наращении ее по абсолютной величине с ускорением, следовательно, формулу сложных процентов можно рассматривать как определение уровня на базе стабильных темпов роста.
Согласно общей теории статистики, для получения базисного темпа роста необходимо перемножить цепные темпы роста. Поскольку ставка процента за период является цепным темпом прироста, то цепной темп роста равен:
(1 + i).
Тогда базисный темп роста за весь период, исходя из постоянного темпа прироста, имеет вид:
(1 + i)n .
Базисные темпы роста или коэффициенты (множители) наращения, зависящие от процентной ставки и числа периодов наращения, табулированы и представлены в Экономический смысл множителя наращения состоит в том, что он показывает, чему будет равна одна денежная единица (один рубль, один доллар и т.п.) через n периодов при заданной процентной ставке i.
Графическая иллюстрация соотношения наращенной суммы по простым и сложным процентам представлена на рисунке 4.
Рис. 4. Наращение по простым и сложным процентам.
Пример 3. Сумма в размере 2'000 долларов дана в долг на 2 года по ставке процента равной 10% годовых. Определить проценты и сумму, подлежащую возврату.
Решение:
Наращенная сумма
FV = PV • (1 + i)n = 2'000 • (1 + 0'1)2 = 2'420 долларов
или
FV = PV • kн = 2'000 • 1,21 = 2'420 долларов,
где kн = 1,21 Сумма начисленных процентов
I = FV - PV = 2'420 - 2'000 = 420 долларов.
Таким образом, через два года необходимо вернуть общую сумму в размере 2'420 долларов, из которой 2'000 долларов составляет долг, а 420 долларов – "цена долга".