Новые методы обоснования рациональных решений. Математическая модель

Новые методы широко применяются в планировании, особенно крупными компаниями. Они основаны на использовании экономико-математических моделей. Чтобы правильно применять эти методы в планировании, менеджеры, плановые работники должны знать области их использования и ограничения на различных этапах планирования при решении конкретных задач.

Для использования экономико-математических методов в планировании необходимо экономический объект или процесс записать с помощью математических зависимостей (уравнений, неравенств и т.п.). Этот процесс называется составлением модели.

Математическая модель - это система выражений, описывающих характеристики объекта моделирования и взаимосвязи между ними. Процесс моделирования заключается в построении моделей, которые облегчают изучение свойств планируемых процессов и объектов.

Моделирование является логико-математическим отображением структуры и процесса функционирования планируемого объекта с целью проведения на данной модели эксперимента. Сущность моделирования заключается в создании такого аналога изучаемых объектов, в котором отражены все их важнейшие с точки зрения цели исследования свойства и опущены второстепенные, малосущественные черты.

1. По форме представления модели могут подразделяться на следующие:

• графические, представляющие собой графическую имитацию

планируемого объекта или процесса;

• числовые, записанные в виде формул;

• логические, записанные в виде логических выражений, например блок-схем;

• табличные, записанные в виде таблиц, например бухгалтерский баланс.

2. С точки зрения отражения временных интервалов модели могут делиться на:

• динамические, отражающие свойства объекта планирования

изменять свои параметры во времени;

• статистические, не отражающие вышеуказанные свойства.

Во внутрифирменном планировании наиболее широкое применение нашли следующие экономико-математические методы:

• методы теории вероятности;

• методы математического программирования;

• методы имитации;

• методы теории графов.

Рассмотрим перечисленные методы.

/. Модели, основанные на использовании теории вероятности и математической статистики (стохастические модели)

К ним относятся модели, основанные на использовании теорий:

• анализа корреляций и регрессий;

• дисперсионного анализа;

• массового обслуживания;

• статистических испытаний;

• игр;

• статистических решений;

• информации;

• надежности;

• расписаний;

• запасов.

Методы теории анализа корреляций и регрессий, дисперсионного анализа применяются в планировании для анализа различных статистических связей и установления нормативов (трудовых, стоимостных, материальных).

Методы теории массового обслуживания используются при планировании оптимальных соотношений между размерами основного и вспомогательного производства, а также другими структурными элементами предприятия, если процессы в них носят нерегулярный характер и могут быть представлены как процесс массового обслуживания.

Методы теории игр и теории статистических решений применяются при принятии и оптимизации решений по управлению процессами взаимоотношения с рынком, страхованию от стихийных бедствий, созданию сезонных запасов ресурсов и т.д.

Применительно к планированию методы теории вероятности сводятся к определению значений вероятности наступления событий и действий и к выбору из возможных направлений действий самого предпочтительного, исходя из наибольшей величины математического ожидания (абсолютной величины этого исхода, умноженной на вероятность его наступления). Применение этих методов позволяет плановикам с большей уверенностью принимать решения на основе "приблизительных" оценок традиционными методами. Поэтому методы теории вероятности, как правило, применяются в комплексе с традиционными методами планирования, изложенными в § 3.2.

Например, методы теории вероятности хорошо применяются вместе с адаптивным поиском стратегии развития фирмы (см. п. 2, §3.2).

Адаптивное дерево поиска показывает возможные решения, подлежащие рассмотрению. По выбранным разветвлениям дерева возможным исходам приписывается та или иная вероятность. Результаты получают количественную оценку.

Ряд общих свойств деревьев решений можно проследить на рис. 3.4, где изображена ситуация, сложившаяся на текстильной фирме "Мартин текстайл милл" : вероятность возрастания в следующем году объема продаж на 20 % равна 0,6. Уровень продаж составляет 100 000 долл. Вероятность снижения уровня продаж на 10 % равна 0,4. Если сбыт увеличится, потребуется либо новое оборудование, либо сверхурочные работы. Комбинация этих двух вариантов возможна, но не рассматривается.

На дереве решений показаны: точка принятия решения, альтернативные варианты действий, случайные события, вероятности их свершения и чистый наличный доход. В нашем примере стоимость нового оборудования составляет 50 000 долл. Оплата сверхурочных работ потребует 10 000 долл. Таким образом, чистый денежный доход при больших объемах продаж будет равен 70 000 долл. (120 000 - 50 000) в случае закупки дополнительного оборудования, и 110 000 долл. - в случае введения сверхурочных работ (120 000 - 10 000).

Предполагается, что, если объем продаж снизится на 10 %, каких-либо сверхурочных работ не потребуется. Ясно, что при таких исходных данных компании гораздо выгоднее использовать сверхурочные работы и не закупать дополнительно оборудование.


Такое решение основывается на сравнении денежных поступлений или суммарных величин стоимости событий, определенных исходя из вероятности их появления. Эта величина для случая закупки дополнительного оборудования подсчитывается путем умножения коэффициента вероятности 0,6 на ожидаемый объем и равна 0,6´70 000 = 42 000 долл. Тот же расчет продаж за вычетом амортизации для малых объемов продаж даст 16 000 долл. Сумма платежа будет равна 58 000 долларов.

Если компания изберет путь увеличения объемов производства за счет введения сверхурочных работ, то суммарный платеж (математическое ожидание) будет равен 102 000 долл. После вычета средств на оплату сверхурочных работ чистый денежный доход при больших объемах продаж составит 110 000 долл. Умножив эту величину на вероятность 0,6, получим 66 000 долл. При малых объемах продаж чистый денежный доход равен 90 000 долл., что дает 36 000 долл. Следовательно, суммарный платеж равен 102 000 долл. Введение сверхурочных работ предпочтительнее

Это решение - не единственно верное. Существует много причин, по которым руководство текстильной компании может принять решение закупить новое оборудование вместо применения сверхурочных работ, несмотря на то, что второй вариант сулит больший доход.